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Abstract 
 
All too often, the concept of risk-neutral probabilities in mathematical finance is 
poorly explained, and misleading statements are made. The aim of this paper is to 
provide an intuitive understanding of risk-neutral probabilities, and to explain in an 
easily accessible manner how they can be used for arbitrage-free asset pricing. 
The paper is meant as a stepping-stone to further reading for the beginning 
graduate student in finance. 
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„Gentlemen, you are now about to embark on a course of studies which will occupy 
you for two years. Together, they form a noble adventure. But I would like to 
remind you of an important point. Nothing that you will learn in the course of your 
studies will be of the slightest possible use to you in after life, save only this, that if 
you work hard and intelligently you should be able to detect when a man is talking 
rot, and that, in my view, is the main, if not the sole, purpose of education.” 

 
- John Alexander Smith, Professor of Moral Philosophy, Oxford University, 1914 

 
 
 
 
 
 
 
1. Introduction 
 
Mathematical finance is concerned with the pricing of redundant securities. A 
security is called redundant if its payoff can be matched by holding other securities 
that already exist in the market, so-called primary securities. The process of 
creating a portfolio in order to match the payoff of a redundant security is called 
replication. The redundant security and the replication portfolio will have exactly the 
same payoff.  Two positions with the same payoff must also have an identical 
market value. If the value was different, then this difference could be locked-in as a 
risk-free profit by engaging in arbitrage. Arbitrage means to buy the cheaper 
position and to sell the more expensive position. A profit is made immediately and 
no risky exposure is left for the future since the payoffs of the two positions will 
precisely cancel each other. Mathematical finance tries to establish precise 
relationships between different securities by assuming that arbitrage activities do 
not exist. It is about relative pricing, i.e. the price of a security is always expressed 
in terms of other securities. 
 
The prices of the primary securities themselves are assumed to be given by the 
markets and are not explained by mathematical finance. Financial economics, on 
the other hand is a wider field, it tries to explain the pricing of the primary securities 
as well, via concepts such as endowments, preference functions, etc. Mathematical 
finance is therefore a subfield of financial economics. 
 
Mathematical finance makes in its efforts extensive use of the risk-neutral 
probability concept. This concept is so widely used, that an intuitive understanding 
of it should not be avoided. In order to create this intuition and allow for a deeper 
understanding, we have to start exploring the concept from a financial economics’ 
perspective. Once we understand the economic interpretation of risk-neutral 
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probabilities, however, we will accept that the prices of the primary securities are 
determined by the market, and we will proceed with relative pricing. 
 
Sections 2.1 – 2.6 introduce all the basic notions in a one-period model. The 
relationship between arbitrage-freeness and the uniqueness of state prices is 
explained. [Note: all notions will be introduced step-by-step throughout the paper.] 
Risk-neutral probabilities are defined in terms of state prices, and interest rates are 
introduced. Section 2.7 moves to a multi-period model, which allows section 2.8 to 
show that every normalised expected asset price path is a martingale, and the 
implications thereof. Sections 2.9 – 2.10 introduce geometric Brownian motion as a 
continuous-time price process example, and outline how an arbitrage-free pricing 
formula can be obtained by moving from a variance estimate to the risk-neutral 
probability distribution, and from there to a state price distribution. The main result 
is that the drift component of the original geometric Brownian motion is not part of 
the final pricing equation, but substituted with the risk free rate; this is of significant 
help when trying to calculate the arbitrage-free price of a replicable asset. 
 
 
 

2. Risk-neutral probabilities explained 
 
2.1 Basic framework 
A very simple framework is sufficient to understand the concept of risk-neutral 
probabilities. Imagine an economy which is in a known state at time 0, and which 
can move to a number of possible, mutually exclusive states at time 1. There is 
only time 0 and time 1. For example, imagine an economy which is now, at time 0, 
in state #3 (where the number 3 indicates the level of economic activity) and which 
can move to state #1, 2, 3, 4 or 5 at time 1. State #5 represents the highest amount 
of economic activity, and #1 the lowest. The economy can only be in one of these 
five states at time 1, but it is unknown at time 0, which state it will turn out to be. 
Imagine that there exists a homogenous view on the probability for these states to 
happen. We therefore have five probabilities, one for each state.1 The probabilities 
sum up to 1, because we know that at time 1 the economy must be in one of these 
five states. This is our initial framework. It is easy to generalise the framework to [n] 
possible states, but this would not add any clarity to our explanation. Five states 
are easier to visualise. We first assume that interest rates are zero, allowing 
intertemporal transfer of wealth at no cost or benefit in dollar terms. This 
assumption will later be relaxed. Figure 1 illustrates our basic framework. 
 
 

                                                 
1 These are not risk-neutral probabilities, but real probabilities. 
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Figure 1 – State space 
 
 
2.2 Arrow securities 
Let us define five types of securities in this framework. For each state, we have one 
security with a contingent payoff of $1 if that particular state is reached, and $0 
payoff otherwise. This is a so-called Arrow security. Figure 2 illustrates, as an 
example, the payoff of the Arrow security contingent on reaching state #4. 
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Figure 2 – An Arrow security 
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Therefore, if we hold all five Arrow securities at time 1, we are sure to receive a 
payoff of $1, since exactly one of the securities will have a payoff contingent on the 
reached state, and all the others will expire worthless. The value of a portfolio of all 
five securities is $1 at time 1. We presume the existence of a bank account with 
overdraft possibility. Since we assume interest rate for that bank account to be 0% 
in equilibrium, the arbitrage-free price of the whole Arrow portfolio must also be $1 
at time 0. If the price of the portfolio was more than $1, say $(1+d), then we could 
sell such a portfolio in the market, thereby receiving $(1+d), and keep a sure profit 
of $d, since we will have to pay out exactly $1 at time 1. If the price was lower than 
$1, say $(1-d), we could buy such a portfolio at time 0,2 thereby again locking in a 
sure profit of $d at time 1. By assuming that the equilibrium interest rate is 0%, 
these arbitrage activities will always drive the price of the complete set of Arrow 
securities towards $1. 
 
What can we say about the price of each individual Arrow security? Each price will 
be determined by the supply and demand in the market. Relevant determinants of 
the supply and demand are: the preferences of the market participants with respect 
to holding money in one state versus another at time 1, the preferences with 
respect to holding money at time 0 versus time 1, and the estimated probability of a 
state actually occurring at time 1. If the participants deem $1 to be more valuable in 
state #1 than in state #5,3 and both states are equally likely to occur, then the price 
of security #1 will be higher than the price of security #5. If the two prices were the 
same, then the participants would try to sell some amount of security #5 and buy 
security #1, because gaining some possible amount in state #1 would be worth 
more than giving up the same possible amount in state #5. This will push the 
market to price these two securities differently until the market is in equilibrium, i.e. 
quantity demanded of each security is equal to its quantity offered. If there was no 
preponderance of the value of dollars in one state over the other, but the 
probabilities of the two states were different, the same process would occur. If we 
do not care whether we have a possible dollar more in state #5 by giving up one 
possible dollar in state #4, and vice versa, but the probability of state #4 occurring 
was twice as high as state #5, then we would be willing to sell some amount of 
security #5 to get some more of security #4. It is the same idea as doubling the 
chances of winning in the lottery without incurring any additional cost. The 
perceived probability of each state will therefore positively impact the price of its 
linked Arrow security a time 0. Finally, by assuming that interest rates are zero, we 
are effectively implying that market participants have no preference of having $1 at 
time 0 over time 1, i.e. they are assumed to be indifferent with respect to time. 
 

                                                 
2 With funding from the bank account 
3 It would not be surprising to value $1 more in times of a recession than in times of rapid economic 
expansion. 
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All we want to keep in mind at this point is that (1) the arbitrage-free price of the 
complete collection of Arrow securities at time 0 is $1, that (2) an Arrow security 
can command a premium over another security in line with the preferences of the 
market participants, and that (3) the more likely an Arrow security is to have a 
positive payoff, the higher its price at time 0. However, we do not have to calculate 
the individual prices but can simply observe them in the market, and specify a 
pricing vector a with the observed market prices. The price of security #1 at time 0 
is a(1), the price of security #2 is a(2), etc. 
 
We now move on to see if we can say more about a market where redundant 
securities are traded. A redundant security is a claim that has a payoff at time 1 
which can be replicated by holding a linear combination of different Arrow 
securities. We need to distinguish complete markets from incomplete markets, 
since we have stronger results for complete markets. 
 
 
2.3 Complete market 
A complete market is a market where all Arrow securities can be traded. It does not 
matter whether there are any “real” Arrow securities or whether they can be 
constructed (i.e. replicated via a linear combination of other traded securities)4. As 
soon as we can construct every possible Arrow security, the market is complete. 
Remember that we know the price of each Arrow security, because we have 
observed all of them in the market. 
 
We can now define a particular redundant security. A security is always defined by 
its, possibly stochastic, payoff. By stochastic, we mean that the payoff might 
depend on the state that the economy reaches at time 1. A risk-free zero coupon 
bond, for example, has a sure payoff of its notional [$n] at time 1, regardless of the 
economy’s state. In order to replicate the bond, we need to buy [n]-times the whole 
set of Arrow securities, as illustrated in figure 3. Since we already know that one 
whole set of Arrow securities costs $1 at time 0, the replication must cost $n. This 
is the only arbitrage free price of the bond. If the bond costs less than $n, say $(n-
d), we could lock in a profit of $d by buying the bond and shorting [n]-times the 
whole set of Arrow securities. If the bond cost more than $n, say $(n+d), we could 
lock in a profit of $d by selling the bond and buying [n]-times the whole set of Arrow 
securities.5 
 
 

                                                 
4 Such replication might involve long, as well as short positions, i.e. besides buying, we might have to sell 
some borrowed securities. 
5 In order to sell something we do not already own, we have to borrow it first. We enter into a repo transaction 
(repurchase agreement) with another party, i.e. we borrow the bond at time 0 and hand it back at time 1, 
including its payoff. This allows us to sell the borrowed bond at time 0, but we must buy it back in the market 
at time 1, including its payoff. 
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Figure 3 – A risk-free zero coupon bond 
 
 
As a second example, a risky zero coupon bond has a stochastic payoff. Let us 
say, for example, that the risky zero coupon bond pays $1 in each state, except in 
state #1 where it pays nothing due to default. This is illustrated in figure 4. 
 
 

State #5

State #4

State #3

State #2

State #1

State #3
$1 payoff

 
 

        Time 0  Time 1 Payoff at time 1 
. 

Figure 4 – A risky zero coupon bond 
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The only arbitrage free price of this bond is the sum of the prices of securities #2, 
3, 4 and 5. If the bond was cheaper, say by $d, then we could buy it, sell Arrow 
securities #2, 3, 4 and 5, thereby locking in a sure profit of $d, because the long 
and short positions exactly cover each other at time 1, no matter in which state the 
economy will turn out to be. Similarly, if the bond was more expensive, then we 
would do the reverse operation; locking in the profit already at time 0 by matching 
the payoff of the long and short positions at time 1. Such arbitrage opportunities 
offer free profit; our assumption here is that such opportunities vanish because 
their pursuit pushes the market price towards the arbitrage-free level. 
 
The idea seems very straightforward. Any possible payoff can be replicated via 
a linear combination of Arrow securities; and this particular replication 
portfolio imposes a unique arbitrage-free price. The arbitrage-free price is 

equal to the sum of all payoff-weighted Arrow security prices. If θ  is the arbitrage-

free price of a security at time 0, and  is the payoff of the security when state 

 is reached, then we have: 
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i
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Let us assume the following observed Arrow security prices: a(1) = 30 cents, a(2) = 
25 cents, a(3) = 20 cents, a(4) = 15 cents, and a(5) = 10 cents, i.e. a security which 
pays $1 only if state #5 is reached at time 1, for example, costs 10 cents at time 0. 
Any payoff structure can be weighted with these prices in order to get the arbitrage-
free price of the security at time 0. For example, the risky zero coupon bond that 
we presented before, has accordingly a unique arbitrage-free price of 70 cents, 
since it is composed of Arrow securities #2, 3, 4 and 5. We can replace the cents in 
the Arrow security prices with [%] if the payoff structure X(i) is already expressed in 
dollar terms. These Arrow security prices are so-called risk-neutral 
probabilities; they are exactly the same thing. It is surprising that this is not 
always pointed out very clearly. Note that we are currently still assuming interest 
rates to be zero.  
 
Why should these prices be called probabilities? For a mathematician, a probability 
measure fulfils the criteria that the sum of all probabilities (of disjoint events) must 
equal 1, and that the probability of a particular event cannot be negative. Since the 
system of Arrow security prices outlined so far fulfils these conditions, it can 
technically be called a probability measure.6 
 
 

                                                 
6 A probability measure is simply a mapping of outcomes to certain probabilities. In our example, each state 
of the economy has an assigned probability. 
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There are frequent statements about risk neutral probabilities which we can now 
easily identify as misconceptions. A risk-neutral probability is NOT the real 
probability of an event happening, but should rather be interpreted as a price. It is 
NOT INDEPENDENT of the real event probability, since the probability positively 
impacts the price of a state-contingent payoff. It does NOT assume that we are in a 
risk-free world, quite the opposite, the world is assumed to have an unpredictable 
future. It does NOT assume that market participants are risk-neutral, they can price 
different state-contingent payoffs in line with their risk preferences, be they risk 
averse, risk neutral or risk seeking. It is simply the only arbitrage free price in a 
complete market. Risk-neutral probabilities (i.e. Arrow security prices or state 
prices)8 simply enforce linear pricing consistency between all traded 
securities with regards to their payoff components. The price for receiving $1 if 
state #3 occurs, for example, cannot be incorporated in a security’s price at 25 
cents in one case, and at 20 cents in another case. If two such securities would 
coexist, then this price difference could be singled-out by stripping both securities 
off all other stochastic payoffs;9 and then trade these two stochastic payoffs 
(contingent on reaching state #3) against each other. Arbitrage activities are 
assumed to eliminate such pricing discrepancies. 
 
 
2.4 Equivalent probability measures 
The risk-neutral probability measure is equivalent to the real probability measure. A 
mathematician talks of the equivalence of two probability measures if both of them 
agree on the possible and the impossible outcomes. If one probability measure 
allocates a positive probability to a certain outcome (meaning that it is a possible 
outcome), then the other probability measure also allocates a positive probability to 
the same outcome. However, if the first measure allocates zero probability to an 
outcome (meaning that it is impossible), then the second measure also allocates 
zero probability. If these two conditions are satisfied, the two probability measures 
are called equivalent. This property of probability measures will be important when 
we try to derive a pricing formula later in this paper. We discuss it here already, 

                                                 
7  means for all i. i∀
8 We will use Arrow security price and state price interchangeably. 
9 With the help of Arrow securities. 
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since, if we think in terms of state prices, the equivalence of the two probability 
measures is easy to see. 
 
If an outcome is impossible (according to the real probability measure) then the 
corresponding Arrow security cannot cost anything (risk-neutral probability). 
Similarly, if an outcome is possible (according to the real probability measure), then 
the price of the corresponding Arrow security must be more than zero (risk-neutral 
probability); otherwise we could get a probabilistic payoff for free. Arbitrage 
activities are assumed to push such a free security into a positive price range. 
 
 
2.5 Incomplete market 
In an incomplete market, not all Arrow securities can be constructed. A security 
which would be redundant in a complete market might not be so in an incomplete 
market. For example, we might not have enough traded securities in our market in 
order to trade or construct Arrow securities #1 and 2. All we can say is that a 
portfolio which contains securities #1 and 2 must have an arbitrage free price of [$1 
- a(3) - a(4) - a(5)], because we know that the arbitrage-free price of all Arrow 
securities together sums up to $1. Now let us assume that a new security is 
introduced into the market which pays $1 if state #2, 3 or 4 is reached, but nothing 
in state #1 or 5. The payoff of this security is illustrated in figure 5. 
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Figure 5 – A security with stochastic payoff 
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This security is not redundant, because we cannot strip-off all payoffs with a 
hedging portfolio. 10 The price of this security must be higher than [a(3) + a(4)], and 
we know that it must be less than [1 - a(5)]. Any price that is assumed within this 
range is arbitrage-free. This is the same as saying that the arbitrage-free price of 
Arrow security #2 is not unique; which in turn is the same as saying that the risk-
neutral probability of state #2 is not uniquely determined. Several different risk-
neutral probability measures can be accommodated by the market prices without 
leading to any arbitrage possibilities. 
 
Once this particular security is trading in the market and a price is established, the 
market will be complete in our example. Any other new security would now be 
redundant and its price strictly determined by the other trading securities. Once we 
have a price for the security introduced before, we can determine a(2),11 and 
therefore also a(1).12 
 
We note that an incomplete market setting allows a range of arbitrage-free prices 
for certain securities. This is the same as saying that a range of risk-neutral 
probabilities exists with respect to the states for which no Arrow securities exist yet. 
Arbitrage-free pricing offers only limited guidance in such a setting. We will not look 
into incomplete markets any further. 
 
 
2.6 Relaxing the interest rate assumption 
So far we have assumed interest rates to be zero. We will now relax this 
assumption and observe what happens to state prices and risk-neutral 
probabilities, respectively. 
 
Assuming an interest rate different from zero implies that the market allocates 
different utility to possessing $1 now versus later. $1 at time 0 can be compounded 
to [$1 * (1 + r)] at time 1. Similarly, $1 at time 1 can be discounted to [$1 / (1 + r)] at 
time 0. This interest rate is applied to our risk-free bank account. 
 
We saw that $1 at time 1 is the same as the payoff of the complete set of Arrow 
securities. The price of the complete set of Arrow securities at time 0 must 
therefore be equal to [$1 / (1 + r)]; otherwise, one can make a risk-free profit by 
trading the complete set via funding through the bank account. We have: 
 

∑
= +

=
5

1 1
1)(

i r
ia  (4) 

                                                 
10 The reverse position of the replication portfolio is called “hedging portfolio”. By reverse, we mean a long 
position is flipped to a short position, and vice versa. 
11 a(2) = [a(2) + a(3) + a(4)] – a(3) – a(4) 
12 a(1) = $1 – a(2) – a(3) – a(4) – a(5) 
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This discounting can be extended to all individual Arrow securities, i.e. the former 
price of each security is divided by [1 + r] to get the new price when introducing an 
interest rate different from zero. We assume that the risk preferences, state 
preferences and probability estimations remain the same; all that has changed in 
the market is time preference. Of course it could be envisaged that time preference 
is interrelated with other preferences, and that therefore state prices do not only 
change by the discount factor, but go through an additional distortion. All we can 
really be sure about is that the price of the whole set of Arrow securities is [$1 / (1 + 
r)] at time 0. In any case, we do not need to calculate the individual Arrow security 
prices; they are determined for us by the supply and demand in the market. 
 
What happened to risk-neutral probabilities along the way? We know that the sum 
of the probabilities of all outcomes must be equal to 1, if we still want to maintain a 
mathematical probability concept. This is not the same as [1 / (1 + r)], if r is different 
from zero. We must therefore multiply each state price with [1 + r] in order to get 

the risk-neutral probability  for each state. As a sum, they again add up to 1. 

We have: 

( )iq

 

iriaiq ∀+∗= ),1()()(  (5) 
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One might argue that this starts to become an artificial construct; which is indeed 
true. A risk-neutral probability is simply something we define. However, as long as 
we remember that risk-neutral probabilities are nothing else than compounded 
state prices, we are fine. The reason for doing this construct is that there is value 
in keeping the condition alive that the sum of all individual probabilities adds up to 
1. This means we can apply all the mathematical machinery that has been 
developed in relation with probability measures. We will see that this is useful at a 
later stage. For now, as long as we remember to reverse the artificial compounding 
with a subsequent equivalent discounting, we will always find our way back to state 
prices, the true determinants of each arbitrage-free price. In order to calculate the 
arbitrage-free price of a redundant security at time 0, we can simply multiply the 
payoff in each state with the corresponding risk-neutral probability, sum up all 
these products, and then discount this sum back to time 0. 
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(7) is equivalent to equation (1). Any price diverging from this calculation would 
enable arbitrage, and market forces would push them to be in line again. In 
mathematical terms, we have done nothing else than discounting the payoff 
expectation under the risk-neutral measure Q. Formulae (8) and (7) are equivalent. 
 

[ ]XE
r

Q

+
=

1
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We do now have an intuitive understanding of what risk-neutral probabilities are; 
they have a direct economic interpretation as compounded state prices. Any factor 
that is relevant for determining the supply and demand of an Arrow security, 
and hence its price, has therefore a direct influence on the corresponding 
risk-neutral probability. Any risk-premia implied by market prices are therefore 
incorporated in the risk-neutral probabilities. The frequently encountered statement 
that “the risk-neutral probability is independent of the real probability” is false. The 
real probability affects the state price, and is hence relevant for the risk-neutral 
probability. Of course, if we already know the state price, then there is no need to 
estimate the real probability for the sake of calculating the risk-neutral probability; 
as the estimate of the real probability is already incorporated in the state price.13 
 
Thus far we have not explained why we rely on risk-neutral probabilities at all. Why 
should we calculate an arbitrage-free price via risk-neutral probabilities if we 
already know the state prices? The answer is that it might not be so straightforward 
to get to know the state prices; in reality, there is a continuous range of states., and 
therefore an infinite number of Arrow securities. Hence, we will later assume that 
state prices are unknown. We will use the connection between risk-neutral 
probabilities and state prices the other way round i.e. we will obtain state 
prices from risk-neutral probabilities for the purpose of arbitrage-free pricing. 
We will be able to use theorems from probability theory in order to obtain risk-
neutral probabilities through a different route. This is the reason why we 
constructed an artificial probability measure. What follows in the next half of this 
paper is a brief overview of how we can calculate risk-neutral probabilities without 
using state prices. Before deriving an arbitrage-free pricing equation, however, we 
first have to gradually move towards a more realistic market setting, and introduce 
some further elements. 
 
 
 

                                                 
13 A similar mistake is usually made when claiming that a forward FX rate is independent of the expected 
inflation in the two currencies, since the arbitrage-free forward FX rate is fully determined by the current FX 
rate and the two interest rates. Correctly, one would have to say that the current interest rates are affected by 
expected inflation. Hence, expected inflation is relevant for the arbitrage-free forward FX rate. However, we 
do not need to estimate expected inflation for the purpose of calculating the arbitrage-free forward FX rate, 
since this expectation is already reflected in the currencies’ interest rates. 
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2.7 Trading strategy and dynamic completeness 
So far, we have looked at a one period model only, with time 0 and 1. 
Conceptually, we can introduce a further element when moving to a multi period 
model. This further element is the trading strategy. In a one period model, all 
trading is a one-off decision at time 0, which cannot be changed before maturity of 
the security at time 1. Let us assume a simple multi-period model with times 0, 1 
and 2, and two state branches at each time knot. 
 

State #5

State #4

State #3

State #2

State #1

State #3

 
 

        Time 0  Time 1 Time 2 
. 

Figure 6 – Multi-period state space 
 
 
In this model we are allowed to make trading decisions at time 0 and at time 1. A 
trading strategy can help in constructing a particular Arrow security.14 If we can 
enter into a trade at time 0, adapt the trade at time 1 without incurring any 
additional cost or benefit , and be sure of the payoff at time 2 for each possible 
state, then the initial price of this future stochastic payoff is determined by the 
upfront cost of the initial trade. Any deviation from this price would lead to arbitrage 
activities. Basically, as soon as there is a replication strategy to perfectly match the 
payoff of a security at time 2, one can always hedge the position, thereby making 
sure that there is no exposure left at time 2. Price differences can be locked in at 
time 0 as a risk-free profit. 
 
The possibility of intermediate trading does not make matters more complicated, 
quite the opposite; it makes it easier to construct Arrow securities. However, it is 
important to note that the trading strategy must be self-financing, i.e. there is no 

                                                 
14 By trading strategy we are not referring to a strategy designed to make a profit, but to a replication strategy 
where we simply try to match a payoff. 
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money coming in or out before maturity. It is only about rebalancing the trading 
portfolio between its components at time 1 in a value-neutral way.15 If the trading 
strategy was not self-financing, then we could not be sure of the initial cost to attain 
the final stochastic outcome,16 and it would therefore not serve as a potential price 
enforcing arbitrage vehicle. 
 
In the one-period model we required the availability of an Arrow security for each 
final outcome, which in turn requires at least an equal number of linearly 
independent securities in case we need to construct these Arrow securities first.17 If 
we can adapt our trade through time, we can potentially construct such Arrow 
securities with fewer primary securities. A market, in which every Arrow security is 
available due to replication-enabling trading strategies, is called dynamically 
complete. A dynamically complete market determines the state prices and the risk-
neutral measure, i.e. every redundant security has a unique arbitrage-free price. 
 
For example, the Black-Scholes equation for calculating the arbitrage-free price of 
a European call option relies on a trading strategy whereby the replicating positions 
in the primary assets are continuously adjusted according to the delta hedging rule. 
Illustrations of such dynamic replication strategies can be looked-up in every book 
listed in the bibliography. Taleb (1997) should be consulted in order to become 
aware of the difficulties of dynamic replication. 
 
For the concept of arbitrage-free pricing via risk-neutral probabilities, we actually do 
not rely on any knowledge about the exact replication strategy itself. We only rely 
on the fact that a replication strategy does exist. Of course, a replication strategy 
might not exist as often as we would like to assume in practice. All we want to keep 
in mind at this point is that replication might involve some active trading of the 
primary assets before maturity of the redundant asset, and not all payoffs can be 
reached by simply buying and holding a mix of primary securities from start until 
maturity. This trading should be self-financing, and the trading rule needs to be 
clear with the information available at the time of application. We cannot use the 
active replication strategy for arbitrage reasoning without these conditions. 
 
 
2.8 Discounted asset prices as martingales 
In a multi-period model with times 0, 1 and 2 we can write an asset price with a 

time subscript. tθ  is the price of the asset at time t. tθ  follows a stochastic 

process, adopting different values depending on the state of the economy at time t. 
                                                 
15 Think of your own stock portfolio. You may decide to sell some amount of one stock to get into another 
one. If you are fully invested before and after your trade without taking any money out or injecting any more, 
then your trade is self-financing. 
16 We do not necessarily know at time 0 what the value of the security and the value of the replication 
portfolio are at time 2 (stochastic / uncertain). All we know is that they will be of equal value. 
17 Linear algebra: to solve for a number of unknowns, we need at least an equal number of equations. 
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Obviously, the price at time 2 is equal to the final payoff: X=2θ . It is important to 

distinguish between an actual price path and its expected path at time 0. In reality, 
a price will follow a certain path as uncertainty with respect to the payoff-relevant 
factors is resolved over time; this is the actual price observed over time 

represented by tθ . However, we are here not interested in the actual path of the 

stochastic price process, because we simply cannot know what it will look like 
beforehand. The only thing we can do is taking expectations about the future at 
time 0. 
 
To perform an expectation under a probability measure, the measure needs to be 
specified. We do not claim to be able to fully specify the real probability measure, 
i.e. the real probability of the price taking a certain path. However, let us assume 
that the risk-neutral probability measure is known. Therefore, we want to see how 
the price path behaves under the risk-neutral expectation operator, simply in order 
to discover its mathematical properties. We can only take expectations at time 0, 
because all the uncertainty is still ahead of us. This can be represented by: 
 

 [ ] 0,0 ≥∀tE t
Q θ  (9) 

 
This is simply a case of taking an expectation of an expectation, because the price 
itself is an expectation [as we saw in equation (8)]. The question is: what is our 
expectation at time 0 about our expectation at some point in the future? Let us start 
with the expected price at time 0: 
 

[ ]
( )

[ ]⎥
⎦

⎤
⎢
⎣

⎡

+
= XE

r
EE QQQ

02000 1
1θ                               (10) 

 
We simply replaced the price within the expectation operator with equation (8). 
Since we are now in a two period model, we are discounting for two periods. The 
discount factor is state-independent and can be taken out of the expectation 
operator. Finally, taking an expectation of the same expectation is the same as 
taking it only once. We therefore obtain: 
 

[ ]
( )

[ ]XE
r

E QQ
0200 1

1
+

=θ                                   (11) 

 
This is actually our arbitrage-free pricing equation (8). We could have written this 
equation directly. We have now shown what happens when taking the same 
expectation twice in a row, it is the same as taking it only once. We are now 
moving to the expected price at time 1, where we get: 
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Since the price at time 1 is only one period before the payoff, we discount for one 
period only. Again, we can take the discount factor out of the expectation. Our 
expectation at time 0 of the final payoff, and our expectation at time 0 of our 
expectation at time 1 of the final payoff, must be the same. We do not know at time 
0 what will happen to the state of the economy between time 0 and 1. This 
relationship is known as the law of iterated expectations.18 We therefore obtain: 
 

[ ] [XE ]
r

E QQ
010 1

1
+

=θ                                   (13) 

 
Finally, we expect the price at time 2 to be: 
 

[ ] [ ][ ]XEEE QQQ
2020 =θ                                     (14) 

 
At time 2, however, we will know what the outcome of the payoff is. The 
expectation of X taken at time 2 must be the payoff itself, we can therefore write: 
 

[ ] [ ]XEE QQ
020 =θ                                        (15) 

 
We can clearly recognise that the expected price grows at the risk-free rate r with 
each period. This is not a surprising pattern. In fact, it is enforced by the arbitrage-
free price of the risk-free zero-coupon bond (or bank account terms), which is 
traded for all maturities and grows at the risk-free rate r, and the way we defined 
risk-neutral probabilities. Relative to a state price, each individual risk-neutral 
probability is inflated until maturity of the payoff by the risk-free rate, simply 
because this growth rate is incorporated in its definition [see equation (5)]. 
 
Any expectation under the risk-neutral measure therefore grows at the risk-free 
rate. Therefore, the expected price of any asset under the risk-neutral measure 
grows at the risk free rate. That is, not the actual price will grow at the risk free rate, 
but the expectation of the price through time, where the expectation is calculated at 
a fixed time (time 0 in our example). This artificial drift was necessary to disguise 

                                                 
18 Imagine that you have an expectation of the final score of a football match before the game starts. At the 
same time you can have an expectation about what your expectation of the final score will be after the first 
half of the game. When taking these expectations at the same time before the match, they coincide. It is only 
with passing time, as the game progresses and uncertainty is resolved, that these expectations can start to 
diverge, because then they are taken with a different set of information. The time subscript under the 
expectation operator effectively refers to the amount of information that we have available. When taking 
several expectations, we always have to work with the expectation that is based on the most restrictive set of 
information, which is obviously always the amount of information at an earlier point in time. 
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the state prices as a probability measure. We emphasize that we are not saying 
anything about how asset prices are actually developing over time as uncertainty is 
being resolved; all we know are the prices at time 0. We have now discovered an 
important mathematical property of our artificial probability measure. 
 
We can get rid off this artificial expected drift only by going through the reverse 
operation. By doing so, every discounted expected future price19 becomes equal to 
the price at time 0. We have: 
 

( )
[ ] 0,

1
1

00 ≥∀=
+

tE
r t

Q
t

θθ                                   (16) 

 
We call this expression the normalised expected price. By going through this 
normalisation (i.e. discounting), we have achieved that the whole expression 
exhibits no more drift. By removing the drift, we have shown that the normalised 
expected asset price process is a martingale. A martingale is a stochastic process 
without expected drift. Since we can form a martingale out of every normalised 
expected asset price path with the help of risk-neutral probabilities, the risk-neutral 
probability measure is also called a martingale measure. The reason for 
transforming the expected price path into a martingale is to open the door for 
martingale theory. Any mathematical machinery and theories that have been 
developed for martingales can now be applied to arbitrage-free asset pricing. 
 
The martingale property is very useful for our purpose of calculating arbitrage-free 
asset prices. We can simply turn equation (16) around to calculate the arbitrage-
free price at time 0. This is the multi-period equivalent of equation (8): 
 

( )
[ ] 0,

1
1

00 ≥∀
+

= tE
r t

Q
t θθ                                   (17) 

 
In the next section, we will move to a framework where asset prices follow a 
continuous process. It can be shown mathematically that any continuous square-
integrable martingale can be represented by a Brownian motion unfolding at a 
certain speed [Björk, 2004]. A Brownian motion is a stochastic process where each 
increment stems from a normal distribution. Hence, the transformation of asset 
prices into martingales with help of the risk-neutral measure effectively enables us 
to work with the normal distribution; but only under the restrictive assumption of 
finite variance. 20 

                                                 
19 From here on, whenever we talk of an expectation, we mean the expectation calculated with risk-neutral 
probabilities, i.e. taking a sum by weighting with compounded state prices. 
20 Square-integrable means that the variance of the process is finite. However, this assumption might not be 
accurate in reality, which would lead to a breakdown of our pricing framework. 
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2.9 Continuous-time model 
We now move on to a setting where the price of a security is continuous in time 
and adopts values on a continuous range from 0 to ∞+ . Security prices now 
follow continuous stochastic processes. Under the one-period or multi-period 
model we were assuming a discrete probability distribution for the price and final 
payoff. All that we are doing now is move to continuous probability distributions of 
the price and payoff. The probability of a price being at a certain level at a certain 
time can be characterised by a probability density function. The mathematics in a 
continuous setting are fairly advanced, but the key concepts developed so far 
remain all the same. 
 
In reality, price processes, such as stock prices over time, are not continuous in 
any dimension, i.e. they are discontinuous in time and discontinuous in price. What 
do we mean? Transactions take place at a specific price, quantity and time. A 
transaction can therefore be represented by a point in a three dimensional space, 
characterised by price, quantity and time. The real price process is a sequence of 
transaction points. There is no connection between these points. The lines we 
usually draw through all the transaction points on a price chart are artificial. In 
reality, even if there was guaranteed continuous bid/offer quoting, a market maker 
might still not be able to execute at the quoted levels. It is therefore advisable to 
consider only transaction levels as price realisations, not quoted levels. We note 
that a continuous price process happens only in our model setting, not in the real 
world. 
 
How can we specify the probability of an asset price to be at a certain level at a 
certain time, assuming that the process is now continuous? We choose the classic 
example of the geometric Brownian motion as a stock price model. The geometric 
Brownian motion is governed by the following stochastic differential equation 
(SDE): 
 

P
tttt dWSdtSdS σμ +=  (18) 

 
P

tdW  stands for the increment in a Brownian motion under a certain probability 

measure P. The increments of a Brownian motion follow a normal distribution, and 

this distribution is fully specified by its mean [ ] 0=dWE P , and its variance 

( )[ ] dtdWE P =2 . The parameter σ  scales the random shocks from the Brownian 

motion, μ  specifies the deterministic drift through time. The solution to the SDE in 

(18) is given by: 
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This can be shown via an application of Ito’s Lemma. We will here not get into the 
topic of solving SDEs, however, and simply present the result. Equation (19) 

specifies our probability distribution for , as we know that  follows a normal 

distribution: . Hence, the whole exponent  follows a normal 

distribution, since the other factors are only shifting and scaling the distribution in a 
non-random way:  
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We will now try to give an arbitrage-free price to a redundant security defined by a 

payoff function  that depends solely on (a certain stock price at time T). As a 

first approach, let us try to obtain the payoff expectation of the redundant security 
under the real probability measure. In order to do that, we have to sum up (over all 
possible scenarios) the payoff under each scenario with its corresponding 
probability density. As we know, normally distributed random variables take on 
values on the whole range from 

X TS

∞−  to ∞+ , our sum is therefore an integral. We 
get the following payoff expectation: 
 

( )[ ] ( ) ( )∫
+∞

∞−
= ωω dpeSXSXE TZ

T
P

00    (22) 

 

where ( )ωp  is the normal probability density function of . TZ
 
Hence, we can calculate the real expectation of the security’s payoff at maturity T, 

IF we have reliable estimates of μ  and σ . We do know  and T, and there are 

no further parameters. However, 

0S
μ  and σ  are very difficult to estimate objectively 

in reality, especially since we are interested in the future drift and volatility. How 
can we measure something that lies ahead of time? Moreover, what we are really 

interested in is the arbitrage-free price 0θ , not the expected payoff at time T. Such 

a payoff expectation under the real probability measure has not been adjusted for 
any sort of risk premia such as those incorporated in the market prices of the 
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primary securities. We have not shown that the above calculation leads to an 
arbitrage-free price. If we could somehow find a way of transforming the 
expectation from the real probability measure to the risk-neutral measure, then we 
could simply discount with the risk-free rate, and be sure that the obtained price is 
arbitrage-free. Such a probability measure transformation is based on the Girsanov 
Theorem.21 
 
 
2.10 Obtaining the risk-neutral probability measure 
We have learnt so far that risk-neutral probabilities are obtained by compounding 
Arrow security prices. We have in our continuous-time example not even made any 
attempt to replicate the redundant security’s payoff, thereby finding out the required 
combination and amounts of Arrow securities and the required self-financing 
rebalancing strategy, which would then give us the arbitrage-free price. Is it 
possible to find out the arbitrage-free price in any other way? The answer is yes. 
 
The Girsanov Theorem offers an alternative route. It shows how we can move a 
stochastic process driven by a Brownian motion from one probability measure to 
another, equivalent probability measure. Such a probability measure transformation 
is unique, and therefore, if we manage to obtain the dynamics under the risk-
neutral measure, we can convert this to a state price distribution by simple risk-free 
discounting. 
 
The move from one probability measure to an equivalent measure22 is done via the 

Radon-Nikodym derivative ( )ωW , where ω  represents a single scenario and Ω  

represents the set of all possible scenarios. 
 

( ) ( )
( ) Ω⊂= ω
ω
ωω ,

p
qW                                           (23) 

 

The density ( )ωq  is the risk-neutral probability density with respect to the state ω , 

and ( )ωp  is the real probability density. The Radon-Nikodym derivative is the risk-

neutral probability density with respect to the real probability density. We can now 
do the following transformation: 
 

( )[ ] ( ) ( ) ( )
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p
qpeSXSXE TZ

T
Q
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21 See for example Björk (2004) 
22 We have seen in section 2.4 that risk-neutral probabilities are equivalent to real probabilities under the 
absence of arbitrage possibilities. 
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Note that, as we change from one probability measure to another, the superscript 
above the expectation has changed from P to Q. This is the risk-neutral payoff 
expectation at time 0. Fortunately, we can easily move from the risk-neutral 

probability density to state price density ( )ως  via simple discounting, just like in 

the discrete market setting. In a continuous setting, rather than thinking in terms of 
discrete Arrow security prices, it makes more sense to use state price density, 
since we would otherwise have to think in terms of an infinite number of Arrow 
securities distributed over a continuous range. The existence of a unique risk-
neutral probability measure implies the existence of a unique state price 
measure.23 
 

( ) ( )ωως qe rT−=                                              (25) 

 
The state price density is the market’s fundamental pricing function with respect to 
all ω . In a complete market, the arbitrage-free price of every asset must be 

consistent with the state price density, i.e. we have for every asset: 
 

( ) ( )∫
Ω

∗= ωωςωθ dX0                                        (26) 

 
This is the continuous-range equivalent of equation (1). The state price density 

( )ως  is simply the equivalent of the Arrow security price in a continuous setting. 

The Radon-Nikodym derivative allows us, therefore, to obtain the arbitrage-free 
price of an asset. In our example, where the underlying asset follows a geometric 
Brownian motion, we have: 
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So far, we know how to proceed conceptually, but how does ( )ωq  in this particular 

case look like? The Girsanov Theorem states that a Brownian motion under the 
real probability measure converts to a Brownian motion under an equivalent 
probability measure PLUS a drift component. We have: 
 

dtdWdW t
Q

t
P

t ϕ+=                                              (28) 

 
We can plug this expression into the SDE in (18), and obtain the stock price 
dynamics under the new probability measure: 
 

                                                 
23 This is based on the Fundamental Theorem of Asset Pricing. 

 22



 

( ) Q
ttttt dWSdtSdS σσϕμ ++=         (29) 

 

However, we still know more than this. We know that the relative change in  is 

composed of an expected drift of 

tS
r  under the risk-neutral measure. The 

deterministic drift component arising from the measure change therefore precisely 
cancels the risk premium in μ . The risk-neutral dynamics of the underlying asset 

are now fully specified with: 
 

Q
tttt dWSrdtSdS σ+=                                      (30) 

 
We can directly move to these dynamics without ever knowing the specific risk 
premium. We know that the risk-premium must be cancelled, because we know the 
transformed drift already beforehand. After equation (27), we are left with the final 
arbitrage-free pricing equation for a redundant asset which is based on an 
underlying asset following a geometric Brownian motion: 
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where  is normally distributed according to the normal density TZ ( )ωq : 
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The nice aspect of this pricing approach is that we no longer need to 
estimate the parameter μ . This is the whole merit of risk-neutral pricing. The 

quality of our arbitrage-free pricing now depends on our ability to estimate σ .24 

How can we estimate this parameter? 
 
The risk-neutral probability approach has helped us twofold in this respect. Firstly, 
we got rid of the drift component which leaves only one parameter to be estimated. 
Secondly, if we have access to the market prices of other securities which depend 
only on the same volatility parameter, thanks to our risk-neutral pricing formula, 

                                                 
24 Do not forget that we have introduced a new parameter which also needs to be estimated, and this is the 
risk-free rate r. It is not necessarily clear in practice whether such a rate actually exists and which one it is. 
Nobody can rule out the possibility of a government default. 
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then we can calculate the implied volatility in these market prices, since it is the 
only unknown parameter. By calibrating our pricing formula with the implied 
volatility from other market prices we aim to get a market consistent, arbitrage-free 
price. Finally, whether this can be achieved depends largely on the validity of the 
assumptions inherent in our pricing framework. 
 
 
 

3. Conclusion 
 
3.1 Putting the pieces together 
We have gone through many steps before finally arriving at an example of an 
arbitrage-free pricing equation. Here, we want to briefly summarise the chain of 
arguments again. 
 
1. If a market is complete and arbitrage-free, then we have a unique system of 
state prices. The arbitrage-free price of any stochastic payoff is the sum (over all 
scenarios) of the scenario-payoff weighted with its state price. Based on the state 
prices, we can define a unique risk-neutral probability measure. For this purpose, 
we need to compound the state prices with the risk-free rate. This introduces a drift 
(at the risk-free rate) into any expectations under the risk-neutral measure taken at 
a fixed point in time. The arbitrage-free price of any stochastic payoff is therefore 
equal to the expected payoff under the risk-neutral measure, discounted at the risk-
free rate. 
 
This first chain of arguments has effectively linked arbitrage-free pricing with a 
probability concept. We can use this chain as a bridge, from arbitrage-free prices to 
equivalent probabilities, and vice versa. Most importantly, we can now use any 
tools and methods known in probability theory, and use this bridge to get back to 
arbitrage-free prices. 
 
2. A redundant security’s payoff is defined in terms of the price of an underlying 
security. If the uncertainty in the underlying security is driven by the innovation of a 
Brownian motion, then the Girsanov Theorem tells us how the price dynamics look 
like under the risk-neutral probability measure. This effectively allows us to obtain 
the risk-neutral probability distribution of the payoff that we are trying to price. 
 
With the help of the second chain of arguments we have obtained the risk-neutral 
probability distribution of the redundant security’s payoff. The first chain of 
arguments can now be used as a bridge to convert this probability distribution back 
to an arbitrage-free price. 
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3.2 Final thoughts 
The main difficulty in intuitively grasping the risk-neutral pricing concept arises from 
the fact that the probabilistic methods and tools used were not primarily developed 
from a financial pricing perspective. This results in the use of two different 
languages, one from economics and the other from mathematics, which can easily 
be confusing. 
 
We have shown in this paper that risk-neutral probabilities are, from the 
economist’s standpoint, state prices compounded with the risk-free rate. One can 
always use this translation in order to make economic sense when using the tools 
from probability theory. 
 
It should be mentioned that the risk-neutral probability concept is only useful for 
arbitrage-free pricing. An arbitrage-free price is not necessarily a fair price, or the 
correct price; it is only a market consistent price. We have two general conclusions: 
1) if a market participant was buying (selling) a redundant asset above (below) its 
arbitrage-free price, then we can say that there would be a more efficient way for 
this market participant to express his view, namely via the replication strategy;      
2) if a market participant was buying (selling) the underlying asset of a redundant 
security, where the redundant security trades below (above) its arbitrage-free price, 
then there would be a more efficient way for this market participant to express his 
view, again via the replication strategy. 
 
Beyond these two statements, a unique arbitrage-free price only serves as a 
trading criterion if the market participant is ready to engage in arbitrage activities, 
trying to lock in price differentials via replication. Otherwise, one needs to take into 
account that the arbitrage-free price of a redundant asset is NOT independent of 
risk premia. The risk-neutral valuation approach implicitly uses the risk premia 
incorporated in the market price of the underlying asset. As we have seen, the 
price of the underlying asset is still part of the arbitrage-free pricing formula, 
therefore, the market risk premia still make their way into the equation. The market 
participant, however, might have different views on adequate risk premia than the 
market, and this needs to be taken into account when trading the redundant asset 
on a stand-alone basis. 
 
Finally, we note that our pricing equation was not model-independent. What does 
this mean? The pricing equation in our example was still relying on the fact that a 
geometric Brownian motion was the correct model for the description of the 
underlying asset’s dynamics. Plenty of simplifying assumptions were made. What 
the risk-neutral probability concept essentially helps us with is the specification of a 
model, by removing the need to specify the drift parameter. However, if the form of 
the model is not correct in the first place, then the specification thereof might not be 
of much use altogether. If the form of the model was different, then the so-called 
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redundant asset might not be replicable and is therefore not redundant. All dynamic 
replication strategies are reliant on correct model assumptions. Making wrong 
assumptions about the form of the model leads us to the notion of model risk, 
which is probably by far the most delicate issue in quantitative finance. It would be 
much safer, for arbitrage-free pricing purposes, to rely on replication arguments 
which do not depend on a particular form for the probability distribution of the 
underlying asset price. It is very important to keep in mind that academics usually 
have a very strong tendency to strive for internal consistency when creating a 
model, even if this may come at the price of several simplifying assumptions. A 
practitioner who wants to apply such a model should never do so without checking 
external consistency, i.e. without ticking off and agreeing to each item in the 
assumptions list. In the best case, academics are close enough to practice in order 
to sufficiently satisfy external consistency in their models. In the worst case, a 
model which was simply meant to solve an idealized problem as an intellectual 
challenge is applied blindly under completely inappropriate circumstances. 
 
 
 
 
 

* * * * * * * 
 
 
 

 
 
The bibliography shows popular references for further introductory reading in 
mathematical finance. Especially Neftci (2000) is an excellent reference for an 
intuitive explanation of the theoretical underpinnings. 
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